
elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation∗

M. Borland, ANL, Argonne, IL 60439, USA

Abstract

elegant (ELEctron Generation ANd Tracking) is the prin-
ciple accelerator simulation code used at the Advanced
Photon Source (APS) for circular and one-pass machines.
Capabilities include 6-D tracking using matrices up to third
order, canonical integration, and numerical integration.
Standard beamline elements are supported, as well as co-
herent synchrotron radiation, wakefields, rf elements, kick-
ers, apertures, scattering, and more. In addition to tracking
with and without errors,elegant performs optimization
of tracked properties, as well as computation and optimiza-
tion of Twiss parameters, radiation integrals, matrices, and
floor coordinates. Orbit/trajectory, tune, and chromatic-
ity correction are supported.elegant is fully compliant
with the Self Describing Data Sets [1, 2] (SDDS) file pro-
tocol, and hence uses the SDDS Toolkit for pre- and post-
processing. This permits users to prepare scripts to run the
code in a flexible and automated fashion. It is particularly
well suited to multistage simulation and concurrent simu-
lation on many workstations. Several examples of complex
projects performed withelegant are given, including top-
up safety analysis of the APS and design of the APS bunch
compressor.

1 INTRODUCTION

There is no shortage of accelerator codes in the world to-
day, so it seems that anyone presenting a new accelerator
code needs to justify its creation. The code should pro-
vide new or better algorithms, a new or better interface,
improved throughput, or some other clear benefit.
elegant (ELEctron Generation ANd Tracking) was cre-

ated in response to specific needs of the author that were
unmet by codes that existed at the time. Since then, it has
grown through meeting the challenges of designing and
commissioning a number of accelerators at the Advanced
Photon Source (APS). A consistent emphasis in develop-
ing elegant was to allow easily performed simulated ex-
periments that mimic those one might perform on a real
accelerator. For example,elegant can vary accelerator
parameters in nested loops and track to find the variation of
beam properties.

In addition,elegant is fully compliant with the Self-
Describing Data Sets (SDDS) data file protocol, which
gives users access to a suite of about 70 generic data pro-
cessing and display tools. These tools can be used to-
gether with scripting languages like Tcl to compose cus-
tomized postprocessing commands. This permits, for ex-
ample, users ofelegant to perform an arbitrary number
∗Work supported by the U.S. Department of Energy, Office of Basic

Energy Sciences, under Contract No. W-31-109-ENG-38.

of similar simulations without additional effort in postpro-
cessing. In addition,elegant itself does not have or need
a postprocessor, which makes code maintenance and devel-
opment easier.

Contrary to recent trends,elegant does not have a
graphical user interface. I firmly believe that such inter-
faces to simulation codes are unproductive in a research
environment. A scripting interface is much more pow-
erful and more suited to the research physicist’s needs.
While elegant does not have a script language itself, cou-
pling elegant with SDDS and common external script
languages gives the same benefits.

The remainder of this paper is divided into five parts:
1. The architecture and flow ofelegant as seen by the
user. 2. A review of the general capabilities ofelegant,
including the types of analyses performed byelegant. 3.
A review of accelerator elements supported byelegant.
4. A review of output files produced byelegant and how
to obtain them. 5. The SDDS Toolkit and how it is used
with elegant. 6. Examples. This paper does not cover
details of commands and element definitions; for this, the
user should consult the manual [3].

2 ARCHITECTURE AND FLOW

An elegant run is driven by a command file. This file con-
sists of namelist-like commands and optional comments. A
sequence of commands is generally required to set up and
execute a calculation, such as tracking a beam. Generally,
a sequence consists of a number of “setup” commands fol-
lowed by a single “action” command that executes the cal-
culations specified in the setup commands. Several such
sequences may be given in a single input file. Sequences
do not communicate with each other, except by using ex-
ternal files to store and retrieve data. For brevity in what
follows, I’ll refer to a command sequence as a “run,” even
though an actual run may contain many such sequences.

In addition to the command file, the user must supply at
least one separate lattice file. The lattice file is similar in
structure to those used by the program MAD (Methodical
Accelerator Design) [4], with some differences due to vari-
ations in capabilities and the types of elements available.
Complex lattice files may be broken into simple lattice files
and then combined using a file inclusion facility.

Output fromelegant takes two forms. The first is text
output that is intended to inform the user of the progress of
the simulation. The second is one or more SDDS files that
the user requestselegant to create. Requests for the cre-
ation of SDDS output files are made through the namelist
commands in the command file, and in some cases through
definitions of elements in a lattice file. Examples of SDDS

LS-287

1 

Presented at the 6th International Computational Accelerator Physics Conference,
ICAP2000, September 11-14, 2000, Darmstadt, Germany



output files include final and intermediate beam coordi-
nates from tracking, parameters of elements, and Twiss pa-
rameters.

Input to elegant, other than the command and lattice
files, takes the form of SDDS files. These are frequently
SDDS files written by anotherelegant run, but may have
any source. Examples are input of beam coordinates for
tracking, element perturbation data, and starting Twiss pa-
rameters.
elegant has no embedded postprocessing or graphics

support. All such tasks are delegated to the SDDS Toolkit,
which provides a much more powerful system than could
reasonably be embedded in a physics code. In addition,
the SDDS Toolkit serves as a postprocessor for a number
of other codes, removing the need to write and maintain
dedicated postprocessors. A complex simulation typically
consists of anelegant command file, a lattice file, and a
script file containing SDDS commands to postprocess and
display the results of the run.

3 GENERAL CAPABILITIES

3.1 Alteration of Accelerator Elements

Alteration of accelerator elements refers to changing the
parameters of an accelerator component after it is defined
by the lattice file. elegant has the ability to simulate
multiple instances of the same system within a single run.
These instances may differ through addition of random er-
rors to element parameters; user-specified, regular varia-
tion of parameters; variation of parameters through loading
from an external file; variation of the initial beam for track-
ing; or various combinations of these.

This capability introduces two possibilities for some of
the physics commands: the possibility of immediate out-
put of computations for the unperturbed or unaltered sys-
tem, and the possibility of output for each instance of the
perturbed or altered system. For example, one might simu-
late a storage ring with focusing errors. One could request
Twiss parameter computations for the ideal ring, or for the
ring in each perturbed case.

1. Altering parameters directly. Thealter elements
command permits altering a parameter of one or more ele-
ments to have a new value. For example, one could readily
compose a command to change the sextupole component
of a set of dipoles for a specific run, without having to alter
the lattice file.

2. Loading parameters from external files. The
load parameters command allows loading values of pa-
rameters of elements from an SDDS file. This may be done
once, to alter the starting definition of the lattice, or repeat-
edly, to load successive instances of the lattice. An example
of the former would be to load ideal quadrupole strengths
from a matching run into a tracking run. An example of the
latter would be to load successive sets of errors; this can be
useful if errors need to be computed in a way thatelegant
does not support internally (e.g., an unusual statistical dis-

tribution or complex linkage of different errors).
3. Addition of random errors to parameters of elements.

This is accomplished using theerror element command,
which supports the uniform and gaussian distributions with
user-specified cutoff. The user may “bind” errors for like-
named elements together, or allow them to be different. Er-
ror values may be saved to an SDDS file for later reloading
into the same or another run usingload parameters.

4. Variation of parameters in loops. Thevary element
command allows specifying regular variation of parame-
ters of elements. Any number of looping indices may be
defined, for multidimensional parameter sweeps. The vari-
ation is linear and equispaced by default, but may also be
geometric. In addition, a sequence of values may be loaded
from an SDDS file.

5. Linking of parameters of elements. The
link elements command allows specifying values of pa-
rameters of one element in terms of values of parameters of
another element. In MAD, this type of relationship would
be declared in the lattice file.elegant permits specifying
the position of the “source” element relative to the element
to be changed, which is useful when there are multiple ele-
ments with the same name. For example, misalignments of
many sets of elements on a series of girders could be linked
to the first element on each girder.

3.2 Saving Accelerator Element Information

elegant can alter element parameters in various ways,
some of which were outlined in the previous subsec-
tion. There are two ways to save this information. The
save lattice command writes a new lattice file that can
be read by anotherelegant run. The file contains all of
the elements in the original file, but with updated values
for parameters.

The save parameters command writes an SDDS file
that can be used withload parameters to restore the con-
figuration of the lattice at the time the save was made. This
is useful primarily in cases where one wants to selectively
restore parts of a configuration, or where one wants to cy-
cle through a series of configurations and perform similar
calculations for each. Sincesave parameters creates an
SDDS file, the SDDS Toolkit can be used for manipulation
of the data, such as selection of subsets.

Neither of these facilities saves the perturbed state of a
lattice. Instead, they save the reference state of the lattice,
or the lattice “definition.” The lattice definition is changed
by operations such as matching, altering elements, and (if
desired) loading parameters. It is not changed by random
errors or variation of parameter in loops.

3.3 Orbit and Trajectory

elegant has several commands that are related to com-
putation and correction of closed orbits and trajectories.
Theclosed orbit command computes closed orbits and
writes the orbits to an SDDS file. The user can control

2



the convergence parameters of the algorithm, which is use-
ful when the working point is near an integer. The user
may also specify that the orbit length should be fixed to the
length of the ideal orbit; this is a more realistic computation
than what is done in most codes, where the rf frequency of
the storage ring is implicitly assumed to change to compen-
sate for the path-length change.

The correct command corrects orbits or trajectories.
A number of SDDS output files are provided, giving or-
bit/trajectory and corrector data and statistics. The user
may specify which elements to use as correctors; for ex-
ample, quadrupole position may be used for steering. As
in theclosed orbit command, the user may select fixed-
length orbit calculations. Noise may be added to beam po-
sition monitor readings to give more realistic results for the
accuracy of correction.

The correction matrix used for orbit or trajectory
correction may be output to an SDDS file using the
correction matrix output command. Both the re-
sponse and the inverse matrix are available, with and with-
out the fixed-length constraint. (This output is used in the
APS controls system for correction of the orbit in the APS
ring.)

Finally, elegant provides analysis of orbit amplifica-
tion factors for corrected and uncorrected cases. This al-
lows, for example, determining how large an orbit pertur-
bation will result from offsets of individual quadrupoles in
the presence and absence of orbit correction. It also pro-
vides the kick strength that is required by each perturbation
for each corrector.

3.4 Optics Calculations and Correction

elegant provides several types of optics calculations, all
available either for the reference or perturbed lattice. These
include Twiss parameters, radiation integrals, chromatic-
ity, and transport matrices. These are provided by the
twiss output andmatrix output commands. Compu-
tation of chromaticity and nonlinear matrix data is con-
trolled by thedefault order control in therun setup
command, and also by theORDER parameter on individual
elements. It is the user’s responsibility to set these param-
eters correctly to get data for the situation of interest. By
default, these calculations are performed to second order.
elegant provides for correction of the tune and chro-

maticity, using thecorrect tunes and chromaticity
commands. In both cases, the user provides the names
of two families of quadrupoles or sextupoles, where a
family is a set of elements with the same name. If
more than two families are involved, additional fami-
lies may be linked to the primary families (or elements)
using link elements. By default, neither tune nor
chromaticity correction changes the reference lattice, but
rather changes the lattice used for a particular simulation
step. This is the desired mode when simulating many
successive randomized machines with correction. One
may cause the reference lattice to be changed using the

change defined values control on these commands.
A different type of optics calculation supported by

elegant is inference of a first-order transport map from
tracking. This calculation, performed by theanalyze map
command, is primarily useful for debugging new elements.

3.5 Optimization

A series of commands support the optimization fea-
ture of elegant. These includeoptimization setup,
optimization term, optimization variable, and
optimize. All but the last of these are setup commands
that prepare for optimization.
optimization setup is used to define the general pa-

rameters of the optimization, including the method (Sim-
plex is preferred), whether to minimize or maximize, how
many evaluations to perform, how frequently to provide
output, and, optionally, the optimization penalty function.
Unlike most other codes, the user must provideelegant
with the optimization penalty function. This provides con-
siderable flexibility, but can be more complicated. In or-
der to make it easier to create the penalty function, the
optimization term command may be used to specify in-
dividual terms in the function; the terms are summed to
obtain the total penalty function.

Depending on what computations the user has requested
prior to invoking the optimizer, the optimization equation
may refer to properties of the tracked beam (e.g., emittance
or centroid position); Twiss parameters at interior points or
at the end of the beamline; overall lattice properties (e.g.,
maximum beta function, equilibrium emittance, chromatic-
ity); first- and second-order matrix elements at the end of
the beamline; and floor coordinates at the end of the beam-
line. The ability to refer to so many properties of the lattice
and the tracked beam giveselegant the capability to per-
form optimizations that other codes can’t. For example,
elegant has been used to directly optimize the emittance
of the APS ring or to optimize the energy spread of a set of
macroparticles in a linac with wakefields.

3.6 Tracking

Tracking inelegant requires definition of a beam and a
tracking method. Definition of the beam is performed with
thebunched beam or sdds beam commands. The former
permits internal generation of a beam with a given emit-
tance, Twiss parameters, bunch length, and energy spread.
Various distributions are supported, such as gaussian, uni-
form, and shell.

Thesdds beam command permits loading particle data
from an SDDS file. This SDDS file may be generated
by elegant itself, using theoutput parameter of the
run setup command to save the final coordinates from
tracking. It may also be generated by aWATCH element,
which provides phase-space output at a point in the lattice.
Finally, the SDDS file may be generated by another pro-
gram or script.

3



For both thebunched beam andsdds beam command,
elegant can track multiple times with the same bunch,
or it can track different bunches in succession. For the
sdds beam command, the latter requires having multiple
pages in the input file.

To invoke tracking, the user gives thetrack command.
Generally, this command has no arguments. The method
employed for tracking particles then depends on the partic-
ular elements used. For example, the user is free to employ
a symplectic implementation of a dipole together with a
first-order implementation of a quadrupole.

Other tracking controls appear in other commands. For
example, the number of instances to track, the order
of tracking, and other controls are provided through the
run setup command. However,track provides some
options, such as tracking longitudinal coordinates only in
a storage ring and tracking with a “linear chromatic” ma-
trix. The latter allows tracking with chromatic effects but
no other nonlinearities. These two modes are exceptions to
the general rule inelegant, namely, that tracking methods
are determined on an element-by-element basis.

A similar control is theconcat order parameter of the
run setup command. It can be used to force concante-
nation of elements simulated with matrices into a single
matrix. In no case is a higher-order element concatenated
to a lower order, however. Instead,elegant concatenates
into a series of matrices of the request order, interspersed
with matrices of higher order and other elements that are
not implemented as matrices.

3.7 Miscellaneous

elegant performs other tasks that do not fit well into
the above categories. Thefind aperture command can
search for the aperture of a machine, whether dynamic,
physical, or a combination (e.g., horizontal “dynamic”
aperture limited by coupling into the vertical in the pres-
ence of a small vertical aperture).

Free Electron Laser (FEL) calculations are performed
using thesasefel command, which starts from the prop-
erties of the tracked beam and uses the parametrization of
Ming Xie [6]. The computations may be performed for
a user-specified number of beam slices, where each slice
contains the same number of particles. The gain length and
other FEL properties may be used in the optmizer.

Thefloor coordinates command may be used to ob-
tain floor coordinate output to a file and for use with the
optimizer. At present,elegant does not compute floor co-
ordinates correctly for beamlines involving vertical bends.

The subprocess command permits executing a com-
mand in the native command shell (e.g., UNIX shell). Such
“shell commands” typically preceed the main run, pro-
viding processing of input data for run setup, or follow
the main run, providing processing of output data. Shell
commands may also be used anywhere in namelist com-
mand, so that, for example, the result of an SDDS Toolkit
shell command may be used as a parameter of a namelist

command. The syntax for this is to give a sequence like
"{command}" instead of the normal value for the namelist
entry, wherecommand is any command (SDDS-based or
otherwise) that can be executed in your shell.

Finally, the run setup and run control commands
provide overall control of the simulation. Many of the
output files are specified byrun setup, as is the lattice
filename, the beamline name, the central momentum, the
default tracking order, the matrix concatenation order (if
any), and the random number seed.run control is used
to specify the number of configurations or beams to gener-
ate and track, the time spacing of successive bunches, the
number of passes for circular machines, and the number of
indices for variation of parameters.

At this point, the reader may well be confused and will
certainly not be able to useelegant after reading the
above. The best way to learn to useelegant is by studying
examples, a number of which are provided on our software
distribution Web page.

4 ACCELERATOR ELEMENTS

elegant supports about 75 different accelerator elements.
(I say “about” because some are mere place-holders while
others are obsolete.) Parameter lists, data types, and units
are listed in the manual. Here, I simply describe the ele-
ments in general terms.

The common beam-transport elements are supported us-
ing a matrix implementation up to second order. This
includes drift spaces, dipoles, quadrupoles, sextupoles,
solenoids, and correctors. In addition, alpha magnets are
supported up to third order [7]. Matrix concatenation is
supported up to third order as well.

For tracking circular machines, it is well known that
second-order matrix tracking is not adequate for dynamic
aperture and other applications requiring many turns.
elegant provides two options to address this problem.
First, one may explicitly change the order of individual
elements. By setting the default order (inrun setup) to
1 and setting the order of the sextupoles to 2 (using the
ORDER parameter of the elements), one obtains symplectic
tracking. Second, one may use the canonical variants of the
individual elements. This involves modification of the lat-
tice file, but allows retaining nonlinearities in dipoles and
quadrupoles. The canonical elements areCSBEND, KQUAD,
KSEXT, andMULT, where the latter is a general multipole.
TheFMULT element permits simulation of a multiple speci-
fied as a list of component strengths in an SDDS file. These
elements also support classical synchrotron radiation en-
ergy losses.
elegant supports rf cavities with exact time depen-

dence. These include theRFCA element, which simulates
a basic rf accelerating cavity and theRFDF element, which
simulates an rf deflector. TheTWLA element simulates a
traveling-wave linear accelerator, which is preferred for
low-energy beams.
elegant supports a number of time-dependent ele-

4



ments. TheBUMPER element permits simulation of a
bumper (or kicker) magnet with a time-dependent wave-
shape specified via an SDDS file. TheMODRF element pro-
vides simulation of an rf cavity with AM and PM modu-
lation of the phase.RAMPRF provides simulation of an rf
cavity with voltage, phase, and frequency waveforms from
an SDDS file.RAMPP provides ramping of the central mo-
mentum in a simulation fashion. Together, these elements
provide simulation of ramped machines, such as booster
synchrotrons.

Several elements provide simulation of collective ef-
fects. TheCHARGE element is used to impart charge to the
beam. Having this as an element in the beamline allows
elegant to vary the charge or assign random errors to it.
The WAKE andTRWAKE elements provide Green-function-
based simulation of longitudinal and transverse wakes,
while theRFCW element combines simulation of an rf cavity
with longitudinal and transverse wakes. TheZLONGIT and
ZTRANVERSE provide simulation of impedances specified
as tables of real and imaginary components as a function
of frequency, or using a broad-band model. For multipass
effects, theRFMODE andTRFMODE elements simulate res-
onator impedances with specified frequency and Q.

TheCSRCSBEND andCSRDRIFT elements allow simula-
tion of coherent synchrotron radiation (CSR) effects on the
beam. The method uses a line-charge approximation [5].
It does not assume steady-state CSR nor does it assume a
gaussian time distribution.

For storage rings,elegant simulates intra-beam scat-
tering using theIBSCATTER element. A number of other
elements also provide for beam scattering or excitation.
The MATTER element simulates scatter and energy loss
due to material in the beam path. TheSCATTER element
provides general scattering under user control, while the
SREFFECTS element allows simulation of quantum excita-
tion and damping effects in storage rings.

Several elements provide apertures of various types. The
ECOL andRCOL elements provide elliptical and rectangular
collimators. TheMAXAMP element permits defining an el-
liptical beam tube that is valid for all following elements
(until the nextMAXAMP element). TheSCRAPER element
provides a single-jaw, straight-edge scraper that may be in-
serted from either side, from the top, or the bottom. The al-
pha magnet element incorporates its own scraper controls.
ThePFILTER element provides momentum filtration that is
very convenient for removing high- and low-energy tails.

Mostelegant elements have misalignment and tilt con-
trols as part of the element definition. In addition, the
MALIGN and ROTATE elements provide for misalignment
and rotation of the beam. TheCENTER element provides
for centering specified beam coordinates (e.g., x or y). The
MAGNIFY element provides for multiplication of particle
coordinates by user-specified factors, which is useful if not
particularly physical. TheREMCOR element allows remov-
ing linear correlations among particle coordinates, which
can be used to simulate certain types of corrections (e.g.,
residual dispersion after a bunch compressor) without hav-

ing to perform them in detail.
elegant provides a number of elements for beam di-

agnostics. TheHMON, VMON, andMONI elements are beam
position monitors (BPM); the user may supply equations
giving the BPM readout as a function of the actual x and
y position in the device. TheHISTOGRAM element provides
SDDS output of histograms of transverse and longitudinal
data. TheWATCH element has several modes that result in
output of beam data to an SDDS file; the user may choose
particle coordinates; beam centroids; beam centroids and
higher moments; or FFTs of turn-by-turn data (for storage
rings).

5 OUTPUT FILES

elegant produces a large number of SDDS output files,
but only when and as requested by the user. This prevents
generation of large amounts of unneeded or perhaps mean-
ingless information. At the same time, users may be con-
fused about how to obtain certain output. As noted previ-
ously, many of the individual commands result in produc-
tion of output files related to the computations they per-
form. In such cases, the user may give the command a
filename to use for each type of output generated by the
command. For example, thetwiss output command not
only controls computation of Twiss parameters for internal
use, but also allows the user to request that Twiss parame-
ters be written to a file.

Many types of output are requested from therun setup
command. In general, any output that does not require spe-
cial parameters is requested viarun setup. Also, any out-
put that may result from several different action commands
(e.g., tracking or optimization) is requested viarun setup.

Finally, a few accelerator elements produce output as
well. In this case, the user specifies the name of the output
file in the definition of the element. Table 1 summarizes the
commands and elements that produce output files.

In order to make it easier for the user to generate names
for output files without constant editing of the command
and lattice files,elegant supports the concept of “incom-
plete” filenames for output files. The user specifies an in-
complete filename by including the sequence “%s” in the
filename. elegant detects this and substitutes the “root-
name” for the simulation run. The rootname is derived au-
tomatically from the name of the command input file by
removing the extension, or it may be specified explicitly in
therun setup command. This is discussed further in the
manual.

6 SDDS TOOLKIT AND ELEGANT

As mentioned above, the SDDS Toolkit is the sole postpro-
cessor forelegant and a number of other physics codes.
This suite of programs provides general-purpose data anal-
ysis and display that can be used directly from the com-
mandline or from within scripts prepared by the user. The
programs can also be called from withinelegant using

5



thesubprocess command and the command-substitution
syntax, as discussed above.

Users concerned about the stability of the Toolkit and the
long-term accessibility of SDDS data may be reassured to
know that SDDS is also a critical part of the APS control
system. In fact, SDDS was originally developed for this
purpose. Starting with commissioning in 1994, the vast
majority of accelerator data was collected in SDDS files.
The data logging system, orbit control system, configura-
tion management system, and other vital systems all use
SDDS files and Toolkit programs.

In this section, I will review some of the most-used
SDDS Toolkit programs and give an indication of the appli-
cation of each toelegant simulations. Because the Toolkit
is based on the concept of self-describing data, each of the
programs may be used with any of the data files described
in the last section. However, there are some combinations
that are used frequently and it is helpful to the new user to
review these. Detailed syntax for using these programs is
available in the manual [8]. In addition, all programs return
a usage message if executed without arguments.

Like elegant itself, the SDDS Toolkit is not based
on a graphical user interface (GUI), for the same reason.
We have found a scripting, command-oriented environment
more productive and better suited to the needs of research
than the confines of a GUI environment.

6.1 Structure of SDDS Files

It will help to review briefly the structure of an SDDS file.
An SDDS file begins with a header that describes the data
in the file. Essentially, the header describes a complex data
structure. Following the header are zero or more instances
of this structure. Each instance is referred to as a “data
page” or “page.”

The header defines three types of entities: parame-
ters, columns, and arrays. Each defined entity may have
one of six data types: short integer, long integer, single-
precision floating point, double-precision floating point,
character, and character string. Parameters are scalar val-
ues. Columns are vector values that form a single table; that
is, all the vectors have the same length and corresponding
entries in the vectors form rows of data. Arrays are arbi-
trary, multidimensional entities and are the most flexible
form. However, arrays are usually unnecessary and few
applications use them.

The example of storing Twiss parameters and related
data may make this clearer. In the output file from the
twiss output command,elegant uses parameters to
store overall properties of a lattice, such as the tunes, chro-
maticities, equilibrium emittance, and momentum com-
paction factor. Not all parameters appear in all Twiss output
files all the time;elegant “knows” which data is meaning-
ful or valid and only puts that data in the file.elegant uses
columns to store Twiss parameters as a function of s, along
with element names and apertures.

In some cases, multiple pages of Twiss parameter data

will be generated. For example, the user may invoke ran-
dom errors and request output of the Twiss data for each set
of errors, or the user may vary some magnet strengths and
request Twiss data for each case.

If the user requests other data besides Twiss parame-
ters, it will in most cases have the same page structure.
For example, if transport matrix output is requested, each
page of the matrix output file will correspond to the same
page of the Twiss parameter file. The only guaranteed ex-
ceptions are the corrector and orbit output files from the
correct command; these require multiple pages for each
case because they must provide data before, during, and
after correction. Even in these cases, the user can employ
thesddsprocess program (see the next section) to remove
unwanted pages and restore a one-to-one correspondence
with other output files.

6.2 Commonly-Used Toolkit Programs

sddsplot is without a doubt the most-used Toolkit pro-
gram. Some typical uses include scatter plots of particle
phase space data, Twiss parameters vs. position, matrix el-
ements vs. position, optimization progress vs. step number,
turn-by-turn phase-space movies, and so on.sddsplot is
used not only to display data directly fromelegant, but
also to display the results of processing with other Toolkit
programs. In most cases where data is processed with the
Toolkit, it ends up being displayed withsddsplot.
sddsprintout is another popular means of displaying

data. Unlike other programs,elegant does not directly
generate printouts of data. Doing so is not only inefficient
in terms of disk space, but the printouts often do not satisfy
the users’ needs, containing insufficient accuracy, uninter-
esting data, or the wrong data. Instead,sddsprintout is
used to create customized printouts from any SDDS file.
The user can thus see only the data that is interesting,
to the required precision, and in a specified order. Like
sddsplot, sddsprintout is frequently found at the end
of a chain of SDDS processing commands, but can be used
directly on the files generated byelegant.
sddsprocess is a general-purpose data processing and

filtering utility. It performs statistics on column data and
places the results in parameters. So, for example, one can
use it to compute the average of the horizontal and vertical
beta functions, or the maximum dispersion. It also cre-
ates new columns and parameters based on user-supplied
equations. Hence, one could usesddsprocess to make a

new column containingβ
3
2
x and then a new parameter〈β

3
2
x 〉.

In addition to accepting equations,sddsprocess accepts
equation templates, so that one can process many similar
columns or parameters in a similar fashion. Taking statis-
tics of multiple columns is similarly easy using wildcards
to select the columns of interest. Filtering of data can be
performed based on numerical values or string values. For
example, one could select all quadrupoles from a Twiss file
and compute the average beta functions at those locations
only.

6



Some other frequently-used tools are:

• sddshist andsddsmultihist for histograms.

• sddsenvelope for finding maximum beta functions,
beta beats, and so on, over many configurations.

• sddsfft for frequency domain analysis.

• sddssmooth for smoothing data.

• sddspfit, sddsexpfit, andsddsgfit for polyno-
mial, exponential, and gaussian fits, respectively.

• sddscollapse is used to collapse a file containing
many pages with parameters and columns to a file
containing a single page. This single page contains
one row for each page in the original files. The
former parameters become columns in the new file.
sddscollapse is commonly used to “throw away”
detailed data after analysis has been performed.

• sddsxref adds selected parameters, columns, and ar-
rays from one file to another file. It can line up rows
in the files by comparing user-specified columns. It
could be used, for example, to bring data from the
Twiss parameter file into a file containing closed or-
bit data.

• csv2sdds converts comma-separated-value data to
SDDS.plaindata2sdds converts unadorned text or
binary data to SDDS;sdds2plaindata performs the
reverse conversion.

• sddsquery provides a printout showing what param-
eters, columns, and arrays are in an SDDS file. The
printout includes data types and units.

7 EXAMPLES

In this section, I give several examples of the application of
elegant to real-world problems. My intention is to show
thatelegant can be applied to some very complex prob-
lems and that it is very useful when designing and upgrad-
ing accelerators. I will not present these examples in great
detail, since this is not a tutorial. Instead, I will summarize
howelegant was used in each case so that the reader can
judge the capabilities of the program.

Like many projects that useelegant and other SDDS-
compliant simulation codes, most of these projects made
use of a multi-workstation queue [9] utilizing up to 50 Sun
workstations. Because scripts are used for setting up, sub-
mitting, and postprocessing jobs, it is possible to run many
jobs simultaneously for greatly improved productivity. The
desire to use this kind of computing environment is one
of the reasons thatelegant is not GUI-based. The GUI
model tends to assume a single user in front of a single
computer.

7.1 APS Positron Accumulator Ring Design

One of the first accelerators designed usingelegant was
the Positron Accumulator Ring (PAR) [10, 11, 12] for the
APS. The PAR is a small ring with a 30.7 m circumference
and eight, 45-degree dipole magnets having a bending ra-
dius of 1.02 m. Other magnets include 16 quadrupoles in
4 families, and 6 sextupoles in 2 families. The PAR has
two rf systems, a first-harmonic system for capturing the
beam, and a twelfth-harmonic system for compressing the
bunch length. In many ways, the PAR is more difficult
to model than a third-generation light source, as the lat-
ter generally has large bending radius, single rf systems,
single-turn kickers, and relatively quick damping.

Matching for the PAR was done using MAD, while
tracking and other analyses were performed withelegant.
Some of the simulations performed withelegant include:

• Simulation of injection and extraction processes us-
ing measured waveforms for the kickers. Since the
kicker pulses are longer than a single turn, simula-
tion was needed to ensure that the partially-damped
stored beam was not lost during injection. Extraction
involves three kickers, two of which form a closed
bump, making for a multi-turn extraction.elegant
was used to find the optimum kicker strength for ex-
traction.

• Simulation of final bunch purity for various ramp-up
profiles of the twelfth-harmonic cavity. These simula-
tions included radiation damping and excitation.

• Simulation of beam stability in the presence of de-
tuned harmonic cavity. This was used to specify the
required detuning of the harmonic cavity when un-
powered. As predicted, the PAR was found to ex-
hibit a sawtooth instability prior to detuning of the
harmonic cavity.

• Simulation of dynamic aperture as a function of mo-
mentum and in the presence of random and systematic
strength, multipole, and alignment errors.

• Testing of diagnostics placement in the transport lines
leading to and from the PAR, and testing of injection
in the presence of errors in the transport lines.

7.2 APS Dog-leg Lattices

The APS has 40 straight sections, each about 5 m long.
Originally, it was thought that users would desire long
undulators, but experience has shown that most individ-
ual users are satisfied with an undulator that requires only
half the available space. This means that half the space
is unused. Recently, a proposal was made to install three-
magnet bumps in one or more straight sections, such that
two insertion devices could occupy the straight section,
with a separation angle of about 1 degree between the
beamlines. This is known as an “ID Dog-Leg.”

7



Concerns about the dog-leg idea included whether the
emittance would be spoiled by one or more such inser-
tions, how much the ideal orbit length would change, and
the usual concerns about dynamic aperture.elegant was
used to match a series of dog-leg configurations for sep-
aration angles of up to 1 degree, with emittances from 8
nm to about 3.5 nm. The matching was highly automated
and performed in stages, starting with no separation and
working up to the maximum separation. Splicing of dog-
leg and non-dog-leg cells was also performed to verify that
the emittance and dynamic aperture did not suffer.

Becauseelegant uses SDDS files, automation of the
process was relatively easy. Scripts were written to set up
a series of runs for different emittances and gradually in-
creasing separation angle. Becauseelegant can directly
perform matching on quantities like the equilibrium emit-
tance, it was easy to obtain lattices that had the desired
emittance for the dog-leg, non-dog-leg, and transitional
cells.
elegant was also used to determine the change in the

length of the central orbit, which involved simulating sev-
eral girder rotations and displacements. The program was
further used to explore alternate configurations that re-
duced the path-length change and others that involve distor-
tion of the sectors around the dog-leg to eliminate pollution
of x-ray BPMs by bending magnet radiation [13].

7.3 APS Top-Up Safety Tracking

“Top-up” [14] refers to a new mode of operating a syn-
chrotron radiation source. Traditionally, synchrotron radia-
tion sources are filled with shutters closed, then shutters are
opened (giving light to the users) while the beam decays
over many hours. In top-up mode, injection occurs fre-
quently with shutters open. A concern with top-up mode is
whether injected beam might, due to some equipment fault,
exit a user beamline, resulting in serious injury. Clearly, if
a dipole magnet were to fail, this is physically possible. In
order to prevent such an accident without interlocking ev-
ery dipole, APS was interested in simply interlocking on
the stored beam, on the assumption that if there was stored
beam, then the dipoles must all be operating properly. An-
alytical methods [15] showed that this was plausible. The
goal of top-up safety tracking [16] was to provide greater
certainty that such an interlock was sufficient.

Top-up safety depends on having apertures in the ring
that limit the possible excursion of the stored beam. Hence,
elegant’s ability to have various types of apertures was
important. For top-up safety tracking, about 500 runs
are required for each aperture configuration. Runs are
grouped according to whether they simulate stored beam
or backward-tracked injected beam, and according to the
“failure scenario.”

A failure scenario always involves a single dipole that
is either fully or partially shorted. In most cases, it also
involves another assumed failure, such as another nearby
magnet that is adjusted so as to make an accident most

likely. For example, if a corrector downstream of the
shorted dipole is driven to maximum current, it might cor-
rect the orbit for the stored beam, thus fooling the interlock.
While this is improbable, we felt it necessary to explore
such possibilities in order to ensure that an accident could
not occur.

For each scenario type, a Tcl/Tk script is used to set up
and submit the simulation runs. This script is itself usually
invoked by another script that starts all the runs involved
in a particular aperture configuration. These scripts greatly
simplify the task of setting up and running a new round of
simulations.

For each scenario, a specific script is used to postprocess
the data and produce a simple results file (again, an SDDS
file). These scripts also detect problems (e.g., missing data
that might result from a workstation crashing), and to pre-
vent using bad data, any simulations with problem data are
deleted and must be run again. The user can easily do this
by reinvoking the submission script. Like startup, post-
processing can be invoked with a single command. This
command executes the scenario-specific scripts, then col-
lates the scenario-specific results files into a single result
file. In addition, the script produces a single value showing
whether the configuration is unsafe.

Both the startup and postprocessing scripts use the
SDDS Toolkit for data preparation and analysis. In ad-
dition to using SDDS files for all output,elegant uses
SDDS files for configuration of tracking and for tracking
input. Most of these files are prepared automatically by the
scripts or by otherelegant runs (a few represent exter-
nal input, e.g., the apertures, and are prepared manually).
Further, different aspects of the same scenario sometimes
share data. Because data is passed between simulations us-
ing SDDS files, there is no risk of transcription error.

7.4 APS Bunch Compressor Design and
Tolerance Analysis

The APS has an FEL project known as the Low Energy
Undulator Test Line (LEUTL) [17, 18]. In order to push
this FEL to saturation with fewer undulators and at shorter
wavelengths, we embarked on a rapid program to build a
bunch compressor for the APS linac [19]. It was desired
to have a system that permitted variation of theR56, which
would be achieved by moving the magnets, rather than hav-
ing very wide magnets. In addition, we desired a system
with variable symmetry, to test the hypothesis that such a
system has smaller CSR-induced emittance growth. All of
the matching and simulation for this project was done with
elegant [20].

The optics of the APS linac were originally designed for
creation and capture of positrons. A first step in the bunch
compressor project was a new optics configuration for the
linac, which involved rearranging the existing quadrupoles
and performing matching for the thermionic and photo-
cathode guns. This new configuration made the linac
bunch-compressor-ready, in addition to improving oper-

8



ations prior to bunch compressor installation. Response
matrix measurements indicated good agreement between
elegant and the reconfigured linac.

Because the bunch compressor chicane is flexible and
because we have multiple sources of beam, it was neces-
sary to perform matching for many configurations. This
was required to ensure that we could accomodate various
R56 values, beam sources, and acceleration profiles within
reasonable limits for power supplies.

The starting point of the simulations was matching of
about 80 chicane configurations for a grid ofR56 and asym-
metry values. This matching included matching of disper-
sion and floor coordinates, to ensure that the various con-
figurations were physically compatible.

Next, longitudinal matching was performed for selected
configurations for the photocathode gun, to obtain desired
beam currents, energy profiles, and minimal energy spread
at the end of the linac. The longitudinal dynamics in the
linac are sensitive to the initial distribution and wake fields,
so that matching had to be performed by tracking a beam
of macro-particles.

Following this, beta function matching was performed
for each configuration. This matching started from a “hand
matched” configuration, working down the linac in four
stages. Data transfer from the chicane configuration, to
longitudinal matching, to transverse matching, was per-
formed automatically using SDDS files and scripts. Once
the scripts and input file templates were prepared for these
runs, any number of configurations could be explored with
little additional work. This was very important given the
rapid nature of the project, since it allowed quick evalua-
tion of proposed changes.

After the matching was completed, tolerance simulations
were performed for all of the configurations. This started
with parameter “sweeps,” wherein a single accelerator pa-
rameter (e.g., an rf phase) was swept over a range to deter-
mine its impact on important beam properties (e.g., bunch
length, gain length). Once all the parameter sweeps were
completed, the results were analyzed to determine which
configurations were least sensitive to errors, and what the
tolerances were. Finally, all-inclusive random-error simu-
lations were performed for those configurations, confirm-
ing the tolerance determination and assessing the impact of
relaxed tolerances.

8 ACKNOWLEDGEMENTS

I developed the early versions ofelegant while work-
ing at the Stanford Synchrotron Radiation Laboratory un-
der Helmut Wiedemann. Since then,elegant has grown
and improved dramatically, thanks in no small part to
bugs found and suggestions made by users, including Paul
Emma, Louis Emery, Zhirong Huang, Eliane Lessner, John
Lewellen, Steve Milton, and Nick Sereno. I’m grateful to
John Galayda for the opportunity to work onelegant and
SDDS while at APS.

9 REFERENCES

[1] M. Borland, ”A Self-Describing File Protocol for Simulation
Integration and Shared Postprocessors,” Proc. of the 1995
PAC, Dallas, Texas, pp 2184-2186 (1996).

[2] M. Borland, ”A Universal Postprocessing Toolkit for Ac-
celerator Simulation and Data Analysis”, Proc. of the 1998
ICAP, Monterey, California, to be published.

[3] M. Borland, “User’s Manual for elegant,” available
on-line at http://www.aps.anl.gov/asd/oag/manuals/ ele-
gantver14.1/elegant.html.

[4] H. Grote and F. C. Iselin, “The MAD Program (Methodical
Accelerator Design),” CERN/SL/90-13(AP), 1991, Geneva,
Switzerland.

[5] E. L. Saldin, E. A. Schneidmillter, and M. V. Yurkov, “On the
coherent radiation of an electron bunch moving in an arc of a
circle,” NIM A 398 (1997) 392.

[6] M. Xie, “Design Optimization for an X-Ray Free Electron
Laser Driven by SLAC Linac,” Proc. 1995 PAC, Dallas, May
1-5, 183.

[7] M. Borland, “A High-Brightness Thermionic Microwave
Electron Gun,” SLAC Report 402, Chapter 3, February 1991,
Ph. D. thesis.

[8] M. Borland, “Users Guide for SDDS Toolkit,” avail-
able on-line at http://www.aps.anl.gov/asd/oag/manuals/
SDDStoolkit/SDDStoolkit.html.

[9] T. P. Green, “Research Toward a Heterogeneous Networked
Computer Cluster: The Distributed Queuing System Version
3.0,” SCRI Technical Publication, 1994.

[10] M. Borland, “Commissioning of the Argonne Positron Ac-
cumulator Ring,” Proc. of the 1995 PAC, May 1-5, 1995, Dal-
las, Texas.

[11] M. Borland, “Construction and Commissioning of the
Positron Accumulator Ring for the APS,” Proc. of the 1994
Conference on Applications of Accelerators in Research and
Industry, NIM.

[12] M. Borland, “Update on the Argonne Positron Accumulator
Ring”, Proc. of the 1993 PAC, Washington, DC, May 1993.

[13] G. Decker, O. Singh, “A Method for Reducing X-ray Back-
ground Signals from Insertion Device X-ray Beam Position
Monitors,” Phys. Rev. ST Accel. Beams,2, 112801 (1999).

[14] L. Emery, M. Borland, “Top-Up Operation Experience at
the Advanced Photon Source,” Proc. of 1999 PAC, March 29-
April 2, New York, 200-202.

[15] L. Emery, M. Borland, “Analytical Studies of Top-Up Safety
for the Advanced Photon Source,” Proc. of 1999 PAC, March
29-April 2, New York, 2939-2941.

[16] M. Borland, L. Emery, “Tracking Studies of Top-Up Safety
for the Advanced Photon Source,” Proc. of 1999 PAC, March
29-April 2, New York, 2319-2321.

[17] S.V. Milton et al., “The FEL Development at the Advanced
Photon Source,” Proc. FEL Challenges II, SPIE, January
1999, to be published.

[18] S. V. Milton et al., “Observation of Self-Amplified Sponta-
neous Emission and Exponential Growth at 530 nm,” Phys.
Rev. Let.,85(5), 988-991.

9



[19] M. Borland et al., “A Highly Flexible Bunch Compressor
for the APS LEUTL FEL,” Proc. 2000 LINAC Conference,
Monterey, to be published.

[20] M. Borland, “Design and Performance Simulations of the
Bunch Compressor for the APS LEUTL FEL,” Proc. 2000
LINAC Conference, Monterey, to be published.

[21] J. W. Lewellen, et al., “A Hot-Spare Injector for the APS
Linac,” Proc. of 1999 PAC, March 29-April 2, New York,
1979-1981.

10



Table 1: Output files created byelegant and command used to obtain them

output command parameter

amplification factors amplification factors several
inferred linear matrix from tracking analyze map output
closed orbit closed orbit output
closed orbit or trajectory before and after correctioncorrect trajectory output
orbit corrector values before and after correction correct corrector output
beam/corrector statistics before and after correctioncorrect statistics
orbit/trajectory response matrix correction matrix output response, inverse
random error values for elements error control error log
dynamic aperture find aperture output
dynamic aperture search boundary find aperture boundary
floor coordinates floor coordinates filename
transport matrices matrix output SDDS output, printout
optimization log (text) optimization setup log file
element dictionary (text) print dictionary filename
final particle coordinates run setup output
centroids vs. s from tracking run setup centroid
sigma matrix etc. vs. s from tracking run setup sigma
final particle and accelerator properties run setup final
initial coordinates of transmitted particles run setup acceptance
coordinates of lost particles run setup losses
magnet layout run setup magnets
lattice parameters run setup parameters
SASE FEL computations sasefel output
lattice file (text) save lattice filename
Twiss parameters twiss output filename
particle coordinates at interior points WATCH element FILENAME
beam centroids at interior points WATCH element FILENAME
beam sigmas at interior points WATCH element FILENAME
beam histograms at interior points HISTOGRAM element FILENAME
CSR wakefields CSRCSBEND element OUTPUT FILE

11


